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1. Introduction 

1.1. Motivation 

Work package 3 (WP3) aims at proposing new technologies for applications related to 

heterogeneous camera networks where camera mobility plays a key role. Such proposals will be 

performed on public datasets. If required, small scenarios will be recorded.  

This deliverable describes the work related with tasks T.3.1 Scene Recognition, T3.2 

Semantic Segmentation, T3.3 Multi-view matching and T.3.4 Cooperative detection and 

tracking 

1.2. Document structure 
 

This document contains the following chapters: 

• Chapter 1: Introduction to this document 

• Chapter 2: Scene Recognition 

• Chapter 3: Semantic Segmentation 

• Chapter 4: Multi-view matching 

• Chapter 5: Cooperative detection and tracking 

• Chapter 6: Conclusions 

 





  
 

D3.v1 Technologies for Mobile Camera Networks   3 

 

2. Scene Recognition 

2.1. Semantic-Aware Scene Recognition Approach [1] 

2.1.1. Design 

Scene recognition is currently one of the top-challenging research fields in computer vision. 

This may be due to the ambiguity between classes: images of several scene classes may share 

similar objects, which causes confusion among them. The problem is aggravated when images 

of a scene class are notably different. Convolutional Neural Networks (CNNs) have significantly 

boosted performance in scene recognition, albeit it is still far below from other recognition tasks 

(e.g., object or image recognition). In this paper, we describe a novel approach for scene 

recognition based on an end-to-end multi-modal CNN that combines image and context 

information by means of an attention module. Context information, in the shape of a semantic 

segmentation, is used to gate features extracted from the RGB image by leveraging on 

information encoded in the semantic representation: the set of scene objects and stuff, and their 

relative locations. This gating process reinforces the learning of indicative scene content and 

enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. 

Experimental results on four publicly available datasets show that the proposed approach 

outperforms every other state-of-the-art method while significantly reducing the number of 

network parameters.  

2.1.1. Experimental results 

The proposed solution is validated by an extensive comparison with the state-of-the art 

using four publicly available datasets described in [2]. The following Tables illustrate this 

comparison. A brief discussion is included for each dataset. See full details in [1]. 

Results on the ADE20K Dataset from Table 1 indicate the effectiveness of the proposed 

architecture when compared to the solely use of either the RGB features or the Semantic 

features. When using both RGB and Semantic features, increments of a 9.9% and a 29.80% in 

terms of Top@1 accuracy and Mean Class Accuracy are obtained whit respect to the RGB 

baseline. 

Results from Table 2 and Table 3 indicate that the proposed method outperforms every other 

scene recognition state-of-the-art algorithm. Specifically, the proposed algorithm using ResNet-

50 as backbone (Ours*) outperforms SDO [4], an algorithm similar in spirit, in a 0.39% and a  

0.85% for MIT Indoor 67 [5] and SUN 397 [6] respectively. 
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Table 1. Scene recognition results on ADE20K 

 

Table 2. State-of-the-art results on MIT Indoor 67 dataset. Methods using objects to drive scene 

recognition include: [13, 14], Semantic Branch, Ours and Ours*. 

 

Results from Table 4 compare the proposed algorithm with respect to state-of-the-art 

Convolutional Neural Networks on Places Dataset [7]. “Ours” obtains the best results from the 

table while maintaining relatively low complexity. Its performance improves those of the 

deepest network, DenseNet-161, by a 0.73% in terms of Top@1 accuracy and it surpasses the 

most complex network, VGG-19, by a 2.29% reducing the number of parameters a 67.13%.     
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Table 3. State-of-the-art results on SUN 397 dataset. Methods using objects to drive scene recognition 

include: [13, 14], Semantic Branch, Ours and Ours*. 

 

Table 4. State-of-the-art results on Places-365 Dataset (%). (* stands for performance metrics reported in 

the dataset).
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Figure 1. Qualitative results. 

First and second column represent the RGB and semantic segmentation images from the 

ADE20K, the SUN 397 and the Places 365 validation sets. The third, fourth and fifth columns 

depict the Class Activation Map (CAM) obtained by using features extracted from: the RGB 

Branch used baseline (ResNet-18), the Semantic Branch and the proposed method (Ours). The 

CAM represents the image areas that produce a greater activation of the network. CAM images 

also indicate the ground-truth label and the Top 3 predictions. It can be observed how the 

proposed method changes the attention towards human-accountable concepts that can be 

indicative of the scene class, e.g., the microwave for the kitchen, the animals for the chicken 

farm or the mirror for the bathroom.  

  



  
 

D3.v1 Technologies for Mobile Camera Networks   7 

 

3. Semantic Segmentation 

3.1. Semantic Driven Multi-Camera Pedestrian 
Detection Approach [3] 

3.1.1. Design 

Nowadays, pedestrian detection is one of the pivotal fields in computer vision, especially 

when performed over video surveillance scenarios. People detection methods are highly 

sensitive to occlusions among pedestrians, which dramatically degrades performance in crowded 

scenarios. The cutback in camera prices has allowed generalizing multi-camera set-ups, which 

can better confront occlusions by using different points of view to disambiguate detections. In 

this paper we present an approach to improve the performance of these multi-camera systems 

and to make them independent of the considered scenario, via an automatic understanding of the 

scene content. This semantic information, obtained from a semantic segmentation, is used 1) to 

automatically generate a common Area of Interest for all cameras, instead of the usual manual 

definition of this area; and 2) to improve the 2D detections of each camera via an optimization 

technique which maximizes coherence of every detection both in all 2D views and in the 3D 

world, obtaining best-fitted bounding boxes and a consensus height for every pedestrian. 

Experimental results on five publicly available datasets show that the proposed approach, which 

does not require any training stage, outperforms state-of-the-art multi-camera pedestrian 

detectors nonspecifically trained for these datasets, which demonstrates the expected semantic-

based robustness to different scenarios. 

3.1.2. Experimental results 

The proposed solution is validated by an extensive comparison with the state-of-the art 

using five publicly available datasets described in [2]. The following Tables illustrate this 

comparison. A brief discussion is included for each dataset. See full details in [3]. 

Results from Table 5 shows that the proposed method outperforms both used baselines 

(Faster-RCNN [8] and YOLOv3 [7]) when both stages (Pedestrian Semantic Filtering and 

Semantic-driven Back-projection) of the proposed method are used. Faster-RCNN, in terms of 

N-MODA is outperformed by an 8.45%, a 4.70%, a 3.52% and a 20.68% for EPFL Terrace, 

PETS 2009 S2L1, PETS 2009 CC and EPFL RLC respectively. On the other hand, YOLO is 

outperformed by a 11.84%, a 1.14%, and a 15.25% for EPFL Terrace, PETS 2009 S2L1 and 

EPFL RLC. 
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Table 5. Stage-wise performance of the proposed method when Faster-RCNNN [9] and YOLOv3 [8] are 

used as baselines. Indicators are Area Under the Curve (AUC), F-Score (F-S), N-MODA (N-A) and N-

MODP (N-P). Filt stands for "Pedestrian Semantic Filtering" stage and Fus & BP stands for "Fusion of 

Multi-Camera Detections (Fus) and Semantic-driven Back-projection (BP)" stages. 

 

Figure 2. Proposed method qualitative results on selected frames of the EPFL Terrace, PETS S2 L1, 

PETS CC and EPFL RLC datasets. 
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Qualitative results from Figure 2 represent bounding-boxes obtained by the proposed 

algorithm on first to third columns. Most-right column represents detections on the ground 

plane. (Faster-RCNN baseline is used for this qualitative example) 

 

Table 6. Comparison with respect to both baselines (Faster-RCNN [3] and YOLOv3 [14]), and multi-

camera state-of-the-art methods non based on deep-learning (POM [10] and MvBN + HAP [4]). 

Results from Table 6 compare the proposed approach, using Faster-RCNN and YOLOv3 as 

baselines, with respect to multi-camera pedestrian algorithms. It can be observed that the 

proposed method yields a higher recall, i.e. increases the number of correct detections by coping 

with occlusions and pedestrian detector errors, while keeping similar precision, i.e. without 

increasing the number of false positives. With respect to POM [10] and MvBN + HAP [4], the 

proposed method also obtains better results in terms of N-MODA which, precisely, measures 

detection accuracy along the whole sequences. 

 

Table 7. Wildtrack Dataset Comparison Results. All the stated methods (except both baselines) are multi-

camera deep-learning based algorithms. 
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Table 7 summarizes state-of-the-art results on Wildtrack Dataset [10]. "Trained" denotes 

that the algorithm has been explicitly trained on Wildtrack dataset, while "Non-Trained" denotes 

that the algorithm has not been trained on it. The proposed method, either with Faster-RCNN or 

YOLOv3 baseline, is also able to outperform all deep-learning approaches that have not been 

specifically adapted to the Wildtrack dataset. Our method improves 18.18% respect to Pre-

DeepMCD [11]—the second ranked—, which is an end-to-end deep learning architecture 

trained on the PETS dataset. 

3.2. A unified semantic segmentation (ongoing) 
 

We have designed a python framework for the training of a semantic segmentation 

algorithm that jointly considers the principal semantic segmentation benchmarks publicly 

available. The idea is to leverage on different appearances of the defined semantic classes to 

enhance the generality and scalability of semantic segmentation. To this aim, we have collected 

and align the semantic classes of five semantic segmentation dataset into a Unified Semantic 

Segmentation Dataset (see [2]). Currently, we are exploring the effect of the learning schedule 

and evaluating the hypothetical advantages and disadvantages of a so-trained semantic 

segmentation with respect to those trained with a single dataset. 

This is an ongoing work that will be fully documented in the following version of this 

deliverable. 
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4. Multi-view matching 

4.1. People/Car re-identification approach 

4.1.1. Description of the algorithm 

The proposed re-identification system [15] is based on the combination of adapted deep 

learning feature embedding representations and a distance metric learning process.  

This section includes the summary of the techniques used to develop the proposed multi-

camera person/vehicle re-identification approach. In Figure 3 we have the flow diagram of the 

approach, first we obtain the features embedding representation using the query, train and test 

sets. Then, we learn the metric in order to get the projection matrix with the features map. The 

objective of using metric learning is to learn a feature space where features metrics that belongs 

to the same object are closer than those of different ones. Finally, we obtain the distances 

between each query and all the test set. 

 
Figure 3. Flow diagram of the vehicle ReID system approach. 
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4.1.1.1. Feature representation 

In order to extract the feature representations, we use the networks AlexNet [34], ResNet-18 

[35], ResNet-50 [35], ResNet-101 [35], Densenet-201 [36] and Inception-ResNet-v2 [37]. We 

choose these networks because of their relevance in scene and object classification.  

Feature extraction module models the appearance of each detected box via deep learning 

features by considering the different networks architectures, all of them pre-trained on the 

ImageNet database [18]. Since ImageNet covers 1000 classes and we need to adapt the model to 

our target, i.e. vehicles, we train some layers of the network while leaving others frozen. We 

have based on [38] to decide the frozen parts of the networks. We freeze before the CNN block3 

except for AlexNet that we freeze before the pool1 layer. All the remaining parts of the networks 

that are not frozen adapt their weights when we retrain on the vehicle images. 

The input images of the CNNs are resize to 227x227. The parameters used for the transfer 

learning of the non-frozen layers are a learning rate of 3e-4 and a batch size of 10. We have 

trained for 6 epochs and use Stochastic Gradient Descent with Momentum optimizer [39]. 

4.1.1.2. Metric learning 

Instead of using the feature embedding representation and the Euclidean distance to rank the 

test candidates, we improve the performance of the system introducing a supervision decision 

using the training data. In particular, the metric learning allows learning a feature space where 

the feature vectors of the same object ID are closer than the features from different objects. After 

the evaluation of the three most common metrics from the literature (XQDA [40], NFST [41] 

and KISSME[42]), we had chosen for the final evaluation the one with the best performance, the 

XQDA. 

4.1.2. Improvement proposals for the 2019 AI City Challenge 

All the improvements included are explained in detail in this section in order to obtain better 

results than those obtained with the baseline method in the 2019 AI City Challenge [47]. 

4.1.2.1. Feature combination at distance level 

To increase the performance of our system, we develop a decision combination at distance 

level. As we can see in Figure 4, we first extract the feature representations and learn the metric 

learning space. Then we compute the distances between the input query and all the images in the 

gallery. At this point, the distances are normalized between 0 and 1. The final re-identification 

decision is based in the averaged distance. 
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Figure 4. Feature combination at distance level. 

 

4.1.2.1. Vehicle trajectory information 

 

Each test track for the CityFlow-ReID dataset [47] contains multiple images of the same 

vehicle captured by one camera. According to the ranked distance between the query and the test 

gallery, we can assume that if there are some images of the same test track with small distances, 

i.e., high confidence of being the same vehicle, the rest of the test track should be also included 

in the ReID decision.  

Therefore, we sort the test tracks that appear in each query (top-100 matches) according to 

their first occurrence in the top-100 rank. We include progressively in ascending distance order, 

all the images of the sorted test tracks until we complete the output list of 100 matches. 

4.1.3. People re-identification results 

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility 

studies algorithms and findings”. This section describes the obtained people re-identification 

results [17]. We compare the results using hand-crafted (manual) features and Deep-learning-

based features (CNN). Table 8 shows the people re-identification results obtained in dataset 

DuleMTMC4ReID [45] using Market1501 [44] as training dataset. Table 9 shows the people re-
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identification results obtained in dataset Market1501 [44] using DuleMTMC4ReID [45] as 

training dataset. Table 10 shows the people re-identification results obtained in dataset ViPER 

[43] using both DuleMTMC4ReID [45] and Market1501 [44] as training dataset. In general, the 

results show clearly that the re-training process improve significantly the CNN based features. 

However, the traditional features or hand-crafted have been tuned during many year in the state 

of the art of people re-identification and still gets better results. 

 

Table 8 People re-identification results obtained in dataset DuleMTMC4ReID [45]. 
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Table 9 People re-identification results obtained in dataset Market1501 [44]. 

 

Table 10 People re-identification results obtained in dataset ViPER [43]. 
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4.1.4. Car re-identification results 

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility 

studies algorithms and findings”. This section describes the obtained car re-identification results 

[15][16] over the car re-identification dataset CityFlow-ReID [46]. We first compare the results 

using the three most common metrics from the literature (XQDA [29], NFST [30] and KISSME 

[31]) using the baseline algorithms in Table 11 and Table 12. The results show clearly a better 

performance using the metric XQDA. 

 

Table 11 GOG and WHOS comparison with XQDA, NFST and KLFDA.  

 

Table 12 Metric Learning comparison with baseline CNNs. In bold is the XQDA result with 

the best performance for all the networks. 

The, we present the obtained results after re-tanning the CNN architectures (XNet_VPU 

version) in Table 13. We realize that using the fine-tuned architectures we obtain more than the 

double of mAP. For instance, in case of DenseNet-201 (architecture trained in ImageNet) and 

DenseNet-201_VPU (architecture fine-tuned in CityFlow-ReID-subset) the mAP obtained is 

10.03% and 30.02% respectively. Also, the rank list is significantly higher in case of fine-tuned 

architectures. 
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Table 13 Results of the fine-tuned deep learning feature methods obtained in the CityFlow-

ReID-subset, all of them with the metric learning XQDA. In bold are the results with the best 

performance, in particular for DenseNet201_VPU and ResNet18_VPU. 

4.1.5. 2019 AI City Challenge re-identification results 

The results of the AI City Challenge have been published on May of 2019. There were three 

tracks with different issues to solve. Fist track was City-scale multi-camera vehicle tracking, 

second one was the City-scale multi-camera vehicle re-identification (our participation track) 

and the last one was Traffic anomaly detection. The number of participants to each track were 

22, 84 and 23 respectively, being our track the one with more participants. We published our 

work in [16]. 

The environment given by 2019 NVIDIA AI City Challenge has allowed to submit up 5 

results per day, with a total of 20 submissions. The results that have returned the server until the 

competition deadline were computed on a 50% subset of the test data. The online server also has 

provided a leader board with the top 3 results of all the competition and the own best result (in 

case not to be on the top-3). Once the deadline has been reached, the server shows all the 

submissions evaluated with all the test set and the entire leader board with all the participants' 

best result. 

In Table 14 we can see the results given at the end of the challenge of the different methods 

that we have developed. First of all, we have the features embedding representation with XQDA 

as metric learning and the CNNs AlexNet, ResNet18, ResNet50, ResNet101 and DenseNet201, 

given ResNet101 and DensNet201 the best results in mAP and in Rank-1, and Rank-100 for the 

case of DenseNet201. Then, we develop the distance combinations with the distance of 

ResNet101, ResNet50 and ResNet18 (DisCombResNet) and ResNet101, DenseNet201 and 

ResNet50 (DistCombRes-Dense-Net), obtaining similar ranks values and a higher mAP than 

with each network separately. 

When we include the information of the tracks files provided in the CityFlow-ReID [47] 

explained in section 3.6.2, we improve the mAP with the inconvenient that we loss precision. 
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DistCombResNet method1 ,DistCombResNet method2 ,DistCombResNet method3 are the first, 

second and third method respectively. The best result is given by the third method of the 

distance combination of ResNet101, DenseNet201 and ResNet50 (DistCombRes-Dense-Net 

method3) with a mAP value of 25.05%. 

We compare the results obtained with our experimental setup included in Table 13 with the 

ones obtained in the AI City server in Table 14. For instance, the value of AlexNet_VPU in our 

evaluation gives a mAP value of 12.66% while in the AI City evaluation is 7.04%. The same 

thing happens with the results of the other feature embedding representations. In our evaluation 

the results are around double than for the AI City server. That could be because, our evaluation 

is done in a reduce subset of the CityFlow-ReID dataset given, and furthermore, the challenge 

does not provide the entire data in order to make its own evaluation. 

The method proposed in this paper has finished the 60 out of the 84 participating teams on 

the challenge City-Scale Multi-Camera Vehicle Re-Identification. In order to compare our 

performance in the challenge with the other teams, we show in Table 15 the participants that are 

in the multiples of ten positions in the rank. We can see that the team in position 40th (TJU0432) 

that is in the middle of the ranked results of the challenge has a mAP score equal to 33.39%, 

which is only 8.34% more than our mAP result (25.05%). Best mAP result achieved in the 

challenge is equal to 85.54%. The teams with the best performance use as baseline the networks 

trained using triplet loss or cross entropy loss. They also include in the classification step the 

information of vehicle models and the vehicle orientation. 

 

Table 14 Results obtained in the online evaluation AI City Challenge [47] server for our 

different methods, all of them with the metric learning XQDA. 
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Table 15 Results of the leader board in [47]. 

 





  
 

D3.v1 Technologies for Mobile Camera Networks   21 

 

5. Cooperative detection and tracking 

5.1. Single-target tracking 

5.1.1. Description of the algorithm 

 

We present a detection-based multiple object tracker from Unmanned Aerial Vehicles 

(UAVs). This work is included in the European Conference on Computer Vision (ECCV) 2018 

proceedings[48].  

The proposed detection-based tracker models the targets by their visual appearance (via 

deep features) and their spatial location (via bounding boxes). It is composed of five main 

modules (see Figure 5), which are described hereunder, and receives as inputs the frame under 

consideration and the detections for each frame (i.e. bounding box, confidence and object class), 

provided by an external object detection algorithm. The output for each target is a track 

describing the sequential information over time. 

 

Figure 5. Block diagram of the proposed algorithm 

 

5.1.1.1. Features Extraction 

The feature extraction module describes the appearance of bounding boxes. Based on Faster-

RCNN [49], we compute features from the input frame with the ResNet-101[50]. deep residual 

network (pre-trained on the COCO dataset1) at layer . We use as region proposals the 

provided detections after confidence-based filtering. For each proposal we get a  

feature map by crop pooling [51], which becomes a  features vector by average pooling. 

 

 

 
1 https://github.com/ruotianluo/pytorch-faster-rcnn  
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5.1.1.2. Spatial Prediction 

The spatial prediction module infers each target location in following frames. We use an 

eight dimensional state-space for each target, containing its bounding box center position , 

aspect ratio , height , and respective velocities . We employ Kalman 

filtering [70] for predicting the state space. For updating the predictions, we use the associated 

filtered detections as observations in the model update module. State prediction is performed at 

the end of the current frame, being employed for data association in the next frame. 

5.1.1.3. Data Association 

The data association module matches the filtered detections with the trajectories of tracked 

targets by using the Hungarian algorithm[52]. We propose to perform association in two stages. 

First, we use appearance features to match detections and predicted targets. Similarity is 

computed as the cosine distance between the detection appearance descriptor and the target 

appearance model (i.e. the last  appearances of the target). Second, we consider the unmatched 

detections and predictions in the previous stage and we apply again the Hungarian algorithm 

using their spatial predicted descriptors (i.e. bounding boxes). The similarity between bounding 

boxes is determined on the basis of the Intersection over-Union criterion[53]. 

5.1.1.4. Track Management 

The track management module is in charge of operations such as track initialization and 

suppression. We employ two counters per track for handling initialization and suppression. One 

counter focuses on the number of consecutive frames where the track is kept. Another counter 

focuses on the number of consecutive frames where the track is lost. Track initialization is 

defined when unmatched detections exist and the first counter is above a threshold (min_life) 

whereas track suppression is performed when the second counter is above another threshold 

(max_unmatched). 

5.1.1.5. Model Update 

The model update module keeps a buffer of the last appearances for each track (i.e. features 

vector of detections associated to the track). 

5.1.2. Results 

We evaluated our approach (FRMOT) on the VisDrone 2018 Benchmark [54] held in ECCV 

2018. Table 16 shows the ranking of the challenge. Although our algorithm (FRMOT) ranks 4.0, 

due to the averaging of the ten metrics that are considered, we obtain better MOTA, IDF1, FAF, 
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MT, ML, FP, FN, IDS and FM than at least one or more algorithms. Figure 6 depicts a sample 

frame with the identifiers and bounding boxes of the tracked vehicles. 

Table 16. From [48], multi-object tracking results on the VisDrone-VDT2018 testing set. Rank is 

computed averaging ten metrics. Algorithms with ⁎ were submitted by the commitee 

 
 

 

Figure 6. Sample frame with tracking results of one the sequences of the VisDrone 2018 dataset. 

Numbers stand for the identifiers of the tracked vehicles.  

 

5.2. Multi-target tracking 

5.2.1. Description of the algorithm 

 

The proposed Multi Target Multi Camera (MTMC) tracking method was published in the 

proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW) 2019 [56] within the scope of CityFlow: A City-Scale Benchmark for 

Multi-Target MultiCamera Vehicle Tracking and Re-Identification [57]. 
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The proposed tracking approach is mainly composed of two main blocks, as shown in 

Figure 5, for analysing data in single and multiple cameras set-ups, respectively. The first block 

aims to detect and track vehicles from each independent camera. The second block performs 

tracking across multiple cameras by modelling appearance of bounding boxes detected for each 

camera; projects them into a common plane to group detections of the same object coming from 

different cameras; and, finally, associates trajectories over time to compute the final tracks. 

 

Figure 7. Block diagram of the proposed tracking method. 

5.2.1.1. Single-camera Tracking and Object Detection 

Multi Target Single Camera (MTSC) tracking is performed solving the tracking-by-

detection problem. The CityFlow benchmark provides detections as bounding boxes using three 

popular detectors: YOLOv3[58], SSD512 [59] and Faster R-CNN [49]. These three detectors 

make use of pre-trained models on the COCO benchmark [60] and the threshold value of  is 

applied to finally obtain the detections. For tracking based on these detections, two online 

approaches such as DeepSORT [61] and MOANA [62] are employed, and also TC [63] as an 

off-line method. The CityFlow benchmark provides results for nine MTSC tracking solutions by 

combining the above-mentioned detectors (three) and trackers (three).  

5.2.1.2. Feature Extraction 

Feature extraction module models the appearance of each detected box via deep learning 

features by considering the AlexNet [64] and ResNet-101 [65] architectures, both pretrained on 

the ImageNet database [66]. Since ImageNet covers 1000 classes and we need to adapt the 

model to our target, i.e. vehicles, we train some layers of the network while leaving others 

frozen. In detail, ResNet-101 is frozen before , and AlexNet is frozen before  

layer, following [67]. To fine-tune the network, we have employed 36,935 sample images of 333 

vehicle identities, extracted from the training set of ReID track 2 in the 2019 AI City Challenge. 

We also set the learning rate to  and batch size to . We train for 6 epochs and use 

Stochastic Gradient Descent with Momentum optimizer [68]. AlexNet architecture give us a 
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4096-dimensional feature vector at the output of  layer, while we obtain a 2048-dimensional 

vector at  layer in ResNet-101 network. 

5.2.1.3. Ground-Plane Clustering 

This module is in charge of associating detections of the same vehicle from different 

cameras obtained at the same time. At every frame, we project all detections of every camera to 

a common plane and apply hierarchical clustering to cluster such projected detections. In 

addition, we employ cluster validity indexes to determine which cluster structure is more 

suitable for our problem (i.e. find the optimal number of clusters). 

For ground-plane projection, we use homography matrices from 2D image pixel location to 

GPS coordinates. Therefore, we consider GPS coordinates plane. 

For clustering, we employ Hierarchical clustering based on two features: visual appearance 

and spatial distance in the ground-plane. Since two detections widely separated are highly 

unlikely to come from the same vehicle, we set a threshold such that the distance between 

vehicles’ detections further than 6 meters in GPS plane is set to a much higher value, i.e. 

impossible association. Similarly, as two detections coming from the same camera cannot be 

merged into the same cluster, the distance between them is also set to the same high value (100 

meters). By this way, two detections are more likely to fit the same vehicle if they are spatially 

close on the ground-plane and have similar visual appearance.  

Ideally, each cluster represents a vehicle and it can be composed of several detections from 

different cameras or composed of merely one detection. As the number of the number of clusters 

is unknown a priori, we have to determine empirically such optimal number. We therefore 

validate different clustering results using validation indexes. We use internal validation, more 

specifically, Dunn’s index [69], which aims to identify dense and well-separated clusters. By 

this way, all possible associations with different number of clusters are computed and we obtain 

an index value for each one. We obtain the optimal number of clusters, i.e. the number of 

vehicles, by taking the index with maximum derivative, i.e. the point of higher gradient. We 

empirically found that maximum derivative provides better information than maximum value. 

5.2.1.4. Spatio-Temporal Association 

The following task, consisting on linking clusters over time, is performed by the spatio-

temporal association module. Positions of each cluster along time form a track. Tracks motion is 

estimated via a constant-velocity Kalman Filter [70] and association between clusters and 

predicted tracks is performed by the Hungarian Algorithm [52] using Euclidean distance 
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between the spatial distances. As for track management, we initialize tracks for clusters (i.e. 

associated detections across cameras) that remain unassigned for 10 frames. Moreover, we also 

remove tracks which are not associated to any cluster for 20 consecutive frames. 

5.2.2. Results 

Leaderboard of CityFlow Challenge is shown in Table 17. This classification ranks 

identification precision (IDF1) on the test scenarios (S02 and S05). Both scenarios comprise a 

total of 23 cameras. S02 is formed by 4 confronted cameras in a road intersection. However, S05 

consists of 19 cameras, spread out over a wide extension, where maximum distance between two 

cameras is 2.5 kilometres. It is important to remark that cameras in S02 are completely 

overlapped between each other, while in S05 there is no overlap between most of them. Since 

our approach is completely dependent on projections, and therefore on overlap, predictably, it 

results in a low performance, as can be seen in Table 2.  

Table 17. Leaderboard of City-Scale Multi-Camera Vehicle Tracking, evaluated on test scenarios 

 
 

 

Figure 8 shows tracking results for scenario S01, formed by confronted cameras, in a 

similar way to S02.  
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Figure 8. Sample visual results in train scenario S01, cameras 1-4. Tracked vehicles in yellow with their 

correspondent IDs. Same blue car is identified with the same ID, as well as the red car. However, an error 

in the single camera tracking leads to a tracking error in the red car in camera 2. 
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6. Conclusions 

This current version of D3, recapitulates the current research outcomes from Workpackage 

3, focusing on new proposals for Scene Recognition, Semantic Segmentation, Multiview 

Matching and Cooperative Detection and Tracking, in scenarios were at least one of the 

following aspects is covered: heterogeneous modalities, multiple cameras and mobile cameras. 

Evaluation has been rigorous, over public datasets (including some created within the project), 

and some of the approaches have been presented in international challenges. 
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